Search results for "pullback attractor"

showing 3 items of 3 documents

Attractors for non-autonomous retarded lattice dynamical systems

2015

AbstractIn this paperwe study a non-autonomous lattice dynamical system with delay. Under rather general growth and dissipative conditions on the nonlinear term,we define a non-autonomous dynamical system and prove the existence of a pullback attractor for such system as well. Both multivalued and single-valued cases are considered.

Statistics and ProbabilityDifferential equations with delayDynamical systems theoryNon-autonomous systemslattice dynamical systemsPullback attractorHamiltonian systemLinear dynamical systemProjected dynamical systemAttractorQA1-939pullback attractorMathematicsNumerical AnalysisApplied MathematicsMathematical analysisdifferential equations with delaynon-autonomous systemsClassical mechanicsLattice dynamical systemsPullback attractorset-valued dynamical systemsSet-valued dynamical systemsLimit setRandom dynamical systemMathematicsAnalysis
researchProduct

Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities

2012

AbstractIn this paper we study the asymptotic behavior of solutions of a first-order stochastic lattice dynamical system with a multiplicative noise.We do not assume any Lipschitz condition on the nonlinear term, just a continuity assumption together with growth and dissipative conditions, so that uniqueness of the Cauchy problem fails to be true.Using the theory of multi-valued random dynamical systems we prove the existence of a random compact global attractor.

Dynamical systems theoryApplied MathematicsRandom attractorsMathematical analysisMultiplicative noisePullback attractorLipschitz continuityMultiplicative noiseSet-valued dynamical systemLinear dynamical systemProjected dynamical systemStochastic lattice differential equationsAttractorRandom dynamical systemAnalysisMathematicsJournal of Differential Equations
researchProduct

On the Kneser property for reaction–diffusion equations in some unbounded domains with an -valued non-autonomous forcing term

2012

Abstract In this paper, we prove the Kneser property for a reaction–diffusion equation on an unbounded domain satisfying the Poincare inequality with an external force taking values in the space H − 1 . Using this property of solutions we check also the connectedness of the associated global pullback attractor. We study also similar properties for systems of reaction–diffusion equations in which the domain is the whole R N . Finally, the results are applied to a generalized logistic equation.

Forcing (recursion theory)Social connectednessApplied MathematicsMathematical analysisPoincaré inequalityPullback attractorSpace (mathematics)Domain (mathematical analysis)symbols.namesakeReaction–diffusion systemsymbolsLogistic functionAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct